
1

A Hierarchical Domain-Specific Language
Supporting Variants of CPPS Software and

Integrating Asset Administration Shells
Christoph Lehnert, Grischan Engel, Thomas Greiner

Institute of Smart Systems and Services
Pforzheim University

Tiefenbronner Straße 65
Pforzheim, Germany

{christoph.lehnert, grischan.engel, thomas.greiner}@hs-pforzheim.de

Abstract

Cyber-physical production systems (CPPS) are formed by a flexible and heterogeneous system architecture. Therefore, a
comprehensive automation software design requires methods for creating and managing automation software variants. In scope
of CPPS, existing approaches do not consider the design of variants combined with software structuring principles. In addition,
information from Asset Administration Shells (AAS) is not used sufficiently. Therefore, we propose a novel approach for a
comprehensive design of automation software variants based on a domain-specific language (DSL). Thereby, software structuring
is provided by the use of several layers with different levels of abstraction. Automation software variants are defined on the
mentioned abstraction layers using specific language elements. In order to determine appropriate variants of control programs for
particular automation systems, information from AAS is used. Finally, the advantages of the proposed approach are demonstrated
in the field of process engineering.

Index Terms

software variants, domain-specific language (DSL), asset administration shells (AAS), cyber-physical production systems
(CPPS)

I. INTRODUCTION

The distributed service-oriented system architecture of cyber-physical production systems (CPPS) enables flexible production.
This flexibility requires software variants which are customized to different products and their manufacturing processes. In
addition, the individual variants of the automation software must support the distributed service-oriented architecture of CPPS,
which makes a comprehensive software design difficult. A contribution to flexible software design for CPPS can be domain-
specific languages (DSL) [1], [2], which consider integration of services as well as asset administration shells (AAS) [1],
hierarchical abstraction layers [1], [3] and modularization [4].

In context of process technology, software variant consideration affects in particular process modules that implement identical
process operations but use different actuator and sensor assemblies for this purpose. They differ with regard to specific properties
of the installed assemblies (e.g. sensor type, motor type, etc.) [4]. A common automation software architecture can be used
for these modules, but the assembly unit differences require a service and parameter configuration specific to the considered
process module. So far, there is no DSL that addresses these requirements and several variants of the automation software
must be created and maintained. Programmable logic controllers (PLCs) with their heterogeneous execution platforms coded
in IEC 61131 languages [5] must be adapted manually when changing hardware or porting to another system. Existing DSLs
are essentially limited to hierarchical abstraction or modularization without supporting the special requirements of automation
technology regarding process module-specific software variant consideration and parameterization with language elements.
Software variant consideration using information from AAS is not taken into account sufficiently.

The contribution of this paper is a novel software variant solution concept for CPPS. It uses a hierarchical DSL with several
abstraction layers and specific language elements for software structuring and definition of software variants. In addition,
information from AAS to determine software variants is applied. For this purpose, several services for an automation program
are defined using the DSL. The corresponding service configurations for different modules are stored in the AAS. Thus, the
AAS instances describe the services which are used depending on the process module type. This information is taken into
account for intermediate code generation of the corresponding program flow. The software variant of the appropriate module

This work has been published at 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), DOI: 10.1109/ICIEA54703.2022.10006111

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2

is therefore configured on a module-specific basis using information from AAS. Then, the generated control software can be
executed on the respective target platform.

The remainder of this paper is structured as follows: Section II gives an overview of related work. Then, in Section III, a
novel concept of software variant consideration using a hierachical DSL and AAS are presented. Furthermore, a workflow and
algorithms for definition and selection of software variants are introduced. Section IV describes a case study of a fill level
control from industrial process engineering, which demonstrates the advantages of the approach. In Section V, we conclude
this paper and describe further research potential.

II. RELATED WORK

Variability is required to efficiently extend, adapt, or configure a software system [6]. Rabiser et al. [7] highlight in their
research preview paper the lack of systematic approaches and explain why dealing with variability in software-intensive cyber-
physical production systems (SiCPPS) is challenging. In industry, the handling of variability currently depends on the domain,
expert knowledge and self-developed tools [8]. In many cases, these tools operate with very specific artifacts or hardware and
software platforms. To manage variability of automation software such as operating modes, diagnosis or fault handling, the
authors of [9] suggest an approach using family models in CPPS. Spellini et al. [10] propose a concept for component reuse
in model-based systems engineering to handle the diversity of variants in production lines. A methodology is suggested to
extract structure diagrams from existing AutomationML descriptions in order to design system functionalities based on them.

Complexity and changeability of CPPS can be handled by modularisation. The resulting requirements for modular plants
in process technology are described in [11]. Modular plants can ensure better reusability of automation software. Reusability
and reconfigurability for modular components is also the goal of Sonnleithner et al. [12], who use design patterns based on
IEC61499 for this purpose. The approach of [13] also supports code reusability to efficiently enable changes to CPPS.

In [14] an AAS framework is introduced to represent relationships between PLC and other devices. Pethig et al. [15] design
an information model based on IEC 61360 to automatically configure a servo motor via an AAS for a PLC. An automatic
self-configuration infrastructure for components is enabled by the approach of [16] with an event-driven runtime access to the
AAS.

There are several approaches for the software design of CPPS with DSL [17]. A DSL consisting of two abstraction layers is
described by Vjestica et al. [18]. There is a master layer for modeling process steps and a detail layer that extends the master
layer. Functions are parameterized statically. The introduction of an abstraction layer is also proposed in [3]. Therein, it is
combined with a component container infrastructure based on standard system and software models of automation technology.

In [1] we propose a hierarchical DSL for collaborative design of automation software. The basic concept of the DSL is
a predefined hierarchical architecture consisting of four abstraction layers, each maintained by different stakeholders such as
Process Engineers, Software Architects, Application Developers and Library Designers. On each layer specific automation
functionalities are encapsulated by services. Thereby, the degree of details within the layers increases towards the bottom
layers and the call hierarchy of services across layers follows in a solely descending pattern. Furthermore, specific language
elements for the integration of information from AAS are provided.

As already mentioned, approaches for automation software variant consideration are missing, which are tailored to changing
process requirements as well as to distributed service requirements of CPPS and their execution on different process modules.
The possibility to design variants of automation software with module specific information from AAS is not considered.
Existing DSL approaches have no special language elements to support the consideration of variants.

III. A NOVEL HIERARCHICAL DSL FOR SOFTWARE VARIANT CONSIDERATION BASED ON AAS

In this paper, we extend our DSL concept in [1] and propose another advantage: the handling of software variants. CPPS
have a high degree of individualization, which leads to a wide range of variants in automation software. The software variant
consideration must match to the durability of CPPS and be able to support the many changes that occur during its evolution.
This makes the development of automation software complex because many dependencies have to be taken into account [9].
Structured modeling and design methodologies are required to manage variance in software [10].

A. Software Variant Solution using Hierachical DSL and AAS

In Figure 1, the concept for software variant consideration based on a hierarchical DSL with abstraction layers combined
with information from AAS is illustrated. Therein, a DSL program is described as an ordered set 𝑃 = {𝐿4, 𝐿3, 𝐿2, 𝐿1}, with
𝐿 being a set of all defined services 𝑆𝑛,𝑘 in 𝑃 and 𝐿𝑘 ⊂ 𝐿 representing the set of services on a specific abstraction layer
1 ≤ 𝑘 ≤ 4. In order for 𝑃 to be valid, it is required that a service is exclusively assigned on a single abstraction layer and each
abstraction layer contains at least one service. Thus, it holds that |𝐿𝑘 | ≥ 1, |𝐿 | ≥ 4 and 𝐿4 ∩ 𝐿3 = ∅, 𝐿4 ∩ 𝐿2 = ∅, 𝐿4 ∩ 𝐿1 = ∅,
𝐿3 ∩ 𝐿2 = ∅, 𝐿3 ∩ 𝐿1 = ∅ and 𝐿2 ∩ 𝐿1 = ∅.

A service with index 𝑛 ∈ N0 on layer 𝑘 is defined as ordered set 𝑆𝑛,𝑘 = {𝑂, 𝐼, 𝑓𝑛,𝑘}, where ordered set 𝑂 = {𝑜0, ..., 𝑜𝑡 }, 𝑡 ∈ N0
represents output parameters, ordered set 𝐼 = {𝑖0, ..., 𝑖𝑟 }, 𝑟 ∈ N0 represents input parameters and 𝑓𝑛,𝑘 indicates the assigned

3

L4: Process Service
Workflow

L2: Application Service
Implementations

L1: Hardware Services

L3: Application Service
Interfaces

S1,2 S2,2

S1,1 S2,1

S1,3 S...,3

S1,4

AssetAsset

AAS

S3,2 S...,2

S3,1 S...,1

control parameters,
service variants

DSL program P with
software variants V

S...,4

Service Sn,k

Fig. 1: Concept for software variant consideraton using hierachical DSL and AAS based on [1]

functionality category. Both single output parameter 𝑜𝑤 and input parameter 𝑖𝑥 are defined as an ordered set {𝑑, 𝑣} with 𝑑 as
data type and 𝑣 as value.

Process modules realizing similiar process operations are interchangeable, but consist of different assembly units. The
required variability in the automation software is achieved via module-specific service call variants 𝑉 . In context of 𝑃, a
software variant, representing a specific program flow, is defined as a dynamic service call graph 𝑉 = (𝐿, 𝐶), where 𝐿 is the
aforementioned set of all defined services and 𝐶 is a set of edges representing service calls across layers.

A specific software variant is a subgraph 𝑉𝑠 ⊂ 𝑉 and corresponds to a path of service calls. In the AAS, the set of required
services 𝑆𝑢 ⊂ 𝐿 for each layer is stored for the respective process module instance 𝑚. This enables a module-specific service
call and thus software variant consideration. The AAS provides relevant information in submodels according to the AAS
metamodel [19].

B. Basic Workflow and Algorithms for Definition and Selection of Software Variants

In Figure 2, the basic workflow for generating specific intermediate code of automation software variants based on a DSL
program is illustrated. Variants of automation software for a process module type can be defined based on DSL language
elements and information from AAS (see Figure 2, step 1). Subsequently, the DSL program is evaluated and thereby a specific
software variant is determined using information from AAS (see Figure 2, step 2). Finally, this enables the generation of
process module-specific intermediate code (see Figure 2, step 3). This intermediate code is generated offline and is provided
to the target platform for execution (see Figure 2, step 4). Wheras the DSL and the intermediate code generator are used on
a development system, the intermediate code is executed on the embedded device of a process module.

1. DSL
3. Intermediate
code generation

2. Selection of
software variant

4. Execution on
target platform

AAS
Information model

Fig. 2: Workflow for generating and executing intermediate code of specific automation software variants

In the DSL, service groups are a realization of software variant consideration according to Figure 3. This language element
is used to group multiple services that provide the same type of functionality but differ in their concrete implementation
depending on the process module instance. In order to use a service group in the DSL, it can be defined on an abstraction
layer (see Section III-C for specific DSL language elements) and called by the superordinate layer via a service group call.
With 𝑃(𝑆𝑛,𝑘) denoting a specific functionality category 𝑓𝑛,𝑘 of a service 𝑆𝑛,𝑘 , a service group can be defined as a set
𝑆𝑔 = {𝑠𝑝0, ..., 𝑠𝑝 𝑗 | 𝑗 ∈ N0, 𝑠𝑝𝑚 ∈ 𝐿𝑘 ∧ 𝑃(𝑠𝑝𝑚)}. Therein, the tuple 𝑠𝑝𝑚 = (𝑆𝑛,𝑘 , 𝑚) defines a specific program flow variant
based on service implementation 𝑆𝑛,𝑘 within abstraction layer 𝐿𝑘 for the corresponding process module instance 𝑚. Process
module instances are derived from a common process module type. Thus, each process module instance in the AAS stores
the required services for its specific software variant and a service group references all identical services for process module
instances of the same type.

4

Layer A

Layer B

Definition Service A
Definition Service B
…

Service group: manual or AAS configuration

Service group call

AAS

Submodel:
Process module type A

• Service A: active
• …

Submodel:
Process module type B

• Service B: active
• …

Control software

Fig. 3: Concept of service groups combined with AAS and service group calls to achieve software variant modeling

Depending on the information in the respective AAS, different services needs to be called from the superordinate layer.
A service group can be called by the superordinate layer using a service group call. Inside a service group the individual
service definitions can be configured from the AAS according to the required program flow of the process module type. The
structure of the AAS is based on the AAS metamodel [19] and consists of several submodels (see Figure 3). Each submodel
represents a process module type whose properties contain the service group configuration required for the module type under
consideration. The service group configuration contains the information which services are switched active or inactive.

In scope of a DSL program 𝑃, the selection of a specific software variant using information from AAS is defined as

∃𝑝 (∀𝑠𝑔𝑐 (∃𝑆𝑔 (𝑐𝑎𝑙𝑙𝑠(𝑠𝑔𝑐, 𝑆𝑔) ∧ ∃𝑆𝑛,𝑘 (1)
(∃𝑚 (𝑒𝑥𝑖𝑠𝑡𝑠𝐼𝑛𝐴𝐴𝑆(𝑆𝑛,𝑘 , 𝑚)) ∧
𝑒𝑥𝑖𝑠𝑡𝑠𝐼𝑛𝑃𝑟𝑜𝑔𝑟𝑎𝑚(𝑆𝑛,𝑘 , 𝑃))))
→ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐺𝑟𝑜𝑢𝑝𝐶𝑎𝑙𝑙 (𝑠𝑔𝑐, 𝑆𝑛,𝑘))

with 𝑚 being the considered process module instance, 𝑆𝑛,𝑘 being the determined service, 𝑆𝑔 being the service group and
𝑠𝑔𝑐 being the service group call. Thus, given a specific process module instance, appropriate services can be determined in
AAS, service group calls can be replaced with process module specific service calls and finally intermediate code for a control
software variant can be generated. The algorithm for selection and intermediate code generation of a specific software variant
according to Equation 1 is defined in Algorithm 1.

Algorithm 1 Selection and intermediate code generation for a specific automation software variant

Require: DSL program 𝑃, process module instance 𝑚

for each ServiceGroupCall 𝑠𝑔𝑐 ∈ 𝑃 do
𝑆𝑔 ← 𝑔𝑒𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐺𝑟𝑜𝑢𝑝𝐷𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛(𝑠𝑔𝑐)
𝑆𝑛,𝑘 ← 𝑔𝑒𝑡𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐼𝑛𝐴𝐴𝑆(𝑆𝑔, 𝑚)
if 𝑆𝑛,𝑘 ≠ NULL ∧ 𝑆𝑛,𝑘 ∈ 𝑃 then

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐺𝑟𝑜𝑢𝑝𝐶𝑎𝑙𝑙 (𝑠𝑔𝑐, 𝑆𝑛,𝑘)
end if

end for
𝑐 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝐶𝑜𝑑𝑒(𝑃)
return 𝑐

C. DSL Language Elements for Service Group and Service Call Definitions

The DSL provides language elements such as loop structures, variable declarations and capabilities to define abstraction
levels, services or functions. However, the goal of module-specific variability of the automation software and its parameterization
out of the AAS requires additional mechanisms and language elements. One possibility are service group calls as preprocessor
statements that have the capability of conditional translation [20]. By linking these preprocessor instructions to the AAS for
configuration, the execution logic of the automation software can be adapted to a module-specific variant at compile time. The
basic concept of module-specific configurable services with the hierarchical DSL has two essential characteristics:

1) The complexity of software variants are reduced with the help of service groups.
2) A direct link to the AAS is provided, allowing easy access to service group configurations.
To be able to operate these characteristics with the DSL, special language elements are designed for this purpose. The

concept of configurable services in the DSL intends to group thematically similar or related services with the help of declarative

5

annotations. This clustering can then be called up by the superordinate layer as a service group call. Inside these service groups,
the corresponding services can be activated or deactivated depending on the module configuration. The service group configured
in this way then affects the translation to intermediate code as a preprocessor instruction. With this concept, the developer can
manage software variants to specific modules without maintaining different code bases. The conditional execution logic for
configuring the service group call is declared statically and manually before execution time or is fetched from the AAS.

Table I gives an overview of selected language elements of the DSL for specifying layers and interacting with service groups
or the AAS. The other language elements such as data types or process service defintions are not listed due to limited space.
Each language element is described by the respective action keyword, highlighted in italics and the corresponding variable(s).
A servicegroup can be defined by using the ”define servicegroup” keywords, followed by the the name of the service group
as well as curly brackets with the service definition. Using the call-keyword, followed by the layer name, a dot and the
corresponding service group name, it is possible to call a servicegroup within a specific layer. @inject and the name of the
AAS with curly brackets is the definition structure to fetch variables, service group configurations or other data structures of
the respective AAS on demand.

TABLE I: Selection of language elements for the specification of layers and for interaction with service groups

DSL element Description

Layer ProcessServiceWorkflow { } Specify layer 4 and the contained
process service flow

define serviceGroup name() { } Defines the individual servicegroup

call LayerName.serviceGroupName() Calls a process servicegroup inside
a specific layer

@inject ... { }
Fetches a variable or servicegroup
on demand from the AAS via a
communication protocol

In order to link a service group to an AAS the inject keyword can be used. The syntax of this keyword is as follows:
@inject serviceGroup name from aas-address=”...”. Thereby, the address specifies an instance of an AAS (e.g. an OPC UA
endpoint server address) which stores the service group information with active and inactive services. A service group call is
realized using the call keyword followed by the corresponding layer and service group names: call layerName.serviceGroup().

The syntax of the declarative annotation inside a layer for manual configuration of a service group is shown in Listing 3. This
configuration can be called by the layer above with the corresponding language element ”call LayerName.serviceGroupName()”
from Table I.

1 define serviceGroup serviceGroupName () {
2 serviceNameA / active
3 serviceNameB / inactive
4 serviceNameC / . . .
5 . . .
6 }

Listing 1: Syntax of the specific execution logic by declarative
annotations for service configuration

The configuration is either done manually (Listing 1) or is automatically retrieved from the AAS using the corresponding
language element ”@inject serviceGroup name from aas-address=”...”{ } like in listing 2. Both, manual service group
definitions and the injects are processed by the preprocessor and thus control the intermediate code generation of a process
module-specific program variant.

1 @inject serviceGroup serviceGroupName from aas-address = ”...”{
2 serviceGroupConfDSLName = serviceGroupConfAASSubModelName
3 }

Listing 2: Syntax to fetch a service group configuration out of the AAS

D. Intermediate Code Generation and Execution on the Target Platform

As depicted in step 3 of the workflow in Figure 2, the automation software developed in the DSL is translated into
variant specific intermediate code. This code represents the respective program flow and serves as executable model on the
target platform. Thereby, it is represented by an inter-control flow graph (ICFG) [21]. Formally, an ICFG is a directed Graph
𝐺 = (𝑉, 𝐴), where 𝑉 is a set of vertices representing programming expressions (e.g. service calls, if-statements, while-statements

6

Variable Definition Service Call …ICFG:

AST: Assign

… …

Call …

… … … …

… …… …

Fig. 4: Conceptional representation of an ICFG with attached AST

etc.) and 𝐴 is a set of edges representing control flows. Arithmetic expressions in programming statements are represented by
an abstract syntax tree (AST) [22] and are part of the corresponding vertices. Figure 4 illustrates the described structure.

The preprocessor decides which parts are generated in the ICFG depending on the service group configuration. For execution
(Figure 2, step 4) of the ICFG the target platform applies a depth-first traversal [23] which is extended to evaluate and execute
each programming expression of the DSL program.

IV. CASE STUDY: FILL LEVEL CONTROL SERVICE IN PROCESS ENGINEERING

To demonstrate the benefits of the presented approach, an exemplary filling process of a reactor inside an agitation module
is described. As illustrated in Figure 5, two types of agitation modules 𝑔 and ℎ are considered, each of which has a pump, a
reactor, a level measurement system and an agitation motor. The basic process logic is identical, so that a common automation

M M

pr
es

su
re

 s
en

so
r

ball valve gate valve

electric motor (AC) electric motor (DC)

centrifugal
pump

gear
pump

op
tic

al
 s

en
so

rAgitation Module
Variant g

Agitation Module
Variant h

Fig. 5: P&I diagram of both agitation module variants

software architecture can be used. However, the agitation modules differ in the type of level measurement due to different level
sensors. In addition, they have different pump characteristics, which is why a customized pump control is used in each case.
Due to these differences, a customized control loop, sensor data preprocessing and control algorithms are required for each
process module. The required services for fill level control for each process module are modeled as service group configurations
in AAS. Consequently, agitation module 𝑔 uses an optical measurement service and agitation module ℎ applies a hydrostatic
fill level sensor service.

The DSL program definition for the described automation software variants is illustrated in Listing 3. In line 2, layer
3 (Figure 1, Application Service Interfaces) is specified. Therein, the service fillingControl with the parameter fillLevel is
defined. Furthermore, it contains, the service group call of fillLevelControl (line 6) on layer 2 (Figure 1, Application Service
Implementations). On layer 2, in lines 15 to 18 the services for both agitation modules are defined. In order to model the
individual program flow for each process module, the service group configuration fillLevelControl from the AAS is injected
(line 13).

1 //Application service interfaces layer definition
2 Layer AppServiceInterfaces moduleAppInterface {
3 //Interface service defintion
4 define interfaceService void fillingControl (declare int fillLevel) {
5 //Service group call
6 call implService appImpl . fillLevelControl (fillLevel)
7 }
8 }
9

10 //Application service implementations layer definition
11 Layer AppServiceImplementations appImpl {
12 // Get the service group configuration from AAS
13 @inject serviceGroup fillLevelControl from aas-address = ”...”
14 //Impl. service defintion 1 of service group fillLevelControl
15 define implService void fillLevelOptical (declare int fillLevel)

7

16 {...}
17 //Impl. service defintion 2 of service group fillLevelControl
18 define implService void fillLevelHydrostatic (declare int fillLevel)
19 {...}
20 ...
21 }

Listing 3: Example of a fill level control with a service group
configuration linked to an AAS and a respective service group call

Based on the described DSL program and information from AAS, the required process module-specific services are configured
and thus influence the generation of individual intermediate code. By the module type specific service group instruction only
the active services are transferred to the intermediate code of the ICFG and executed on the target platform. The intermediate
code is an inter-control flow graph (ICFG). The generated ICFG for each process module is illustrated in Figure 6. As depicted,
the program flow differs depending on the type of agitation module. Basically, this model is equivalent to an adjacent list.
The process module now interprets the different types of vertices, which represent individual programming expressions of the
DSL. The AST attached to the vertices is resolved by the target platform with depth first traversal.

ServiceCallVertex
fillLevelControl

EnterServiceVertex
fillLevelOptical

…

Agitation Module g
ICFG

ExitServiceVertex
fillLevelOptical

ServiceReturnVertex
fillLevelControl

ServiceCallVertex
fillLevelControl

EnterServiceVertex
fillLevelHydrostatic

…

Agitation Module h
ICFG

ExitServiceVertex
fillLevelHydrostatic

ServiceReturnVertex
fillLevelControl

Fig. 6: Generated ICFG depending on the agitation module type

The Eclipse IDE is used for the implementation. The DSL grammar is defined in Xtext, the validator and generator in Xtend.
The Modeling Workflow Engine 2 and the Eclipse Modeling Framework are used in the background [24]. The intermediate
code is converted to an XML data structure and then parsed and interpreted. This occurs on the target platform, the agitation
module, which is developed using the c programming language.

V. CONCLUSION AND OUTLOOK

The development of automation software for CPPS requires the support of process module-specific software variants allowing
a variable system architecture. For this purpose, software design methods are necessary that support the handling of automation
software variants. In addition to the service oriented structure of CPPS, process module-specific properties must also be taken
into account. The AAS contains process module-specific information which can be used for parameterization and customization
of the software variants. In order to achieve this, we propose the usage of a hierarchical DSL with special language elements
for variant consideration integrating the AAS. Compared to other related work, we provide a DSL for the systematic design
of software variants in CPPS, which is not limited to single domains or reliant on expert knowledge. With this concept, the
software designer can customize the software to specific process modules without having to maintain different code bases. The
applicability is demonstrated by using a filling control application from the process industry.

The application of a DSL, which integrates the AAS for variant consideration, can be seen as a further essential development
component for CPPS.

The applicability of the approach is shown on a module from process engineering, but can also be applied to modules from
manufacturing engineering. The current approach focuses on a textual DSL. For an intuitive graphical programming of the
DSL, a graphical representation concept needs to be determined. In addition, further research involves time decoupling of
layers and semantic programming of parallel services. These aspects are not part of our contribution.

ACKNOWLEDGMENT

This work is funded by the Federal Ministry of Education and Research Germany as part of the project IMPACT ”Innovative
Methods for Programming of Automation Control Technology” under grant number 01IS19031B.

8

REFERENCES

[1] C. Lehnert, G. Engel, H. Steininger, R. Drath, and T. Greiner, “A hierarchical domain-specific language for cyber-physical production systems integrating
asset administration shells,” in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2021, pp. 01–04.

[2] K. Meixner, J. Decker, H. Marcher, A. Lüder, and S. Biffl, “Towards a Domain-Specific Language for Product-Process-Resource Constraints,” in 2020
25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 1405–1408.

[3] G. Music, B. Heinzl, and W. Kastner, “Ava: A component-oriented abstraction layer for virtual plug&produce automation systems engineering,” Journal
of Industrial Information Integration, vol. 26, p. 100251, 2022.

[4] “Automation requirements relating to modularisation of process plants,” NAMUR NE 148, 2013.
[5] “Iec 61131 - programmable controllers - all parts,” International Electrotechnical Commission, Standard, 2022.
[6] K.-C. K. Rafael Capilla, Jan Bosch, Systems and Software Variability Management. Springer, 2013.
[7] R. Rabiser and A. Zoitl, “Towards mastering variability in software-intensive cyber-physical production systems,” Procedia Computer Science, vol. 180,

pp. 50–59, 2021.
[8] A. Gutierrez, L. Sonnleithner, A. Zoitl, and R. Rabiser, “Approaches to mastering variability in software-intensive cyber-physical production systems,”

in e & i Elektrotechnik und Informationstechnik volume 138, 2021, pp. 321–329.
[9] B. Vogel-Heuser, J. Fischer, D. Hess, E.-M. Neumann, and M. Würr, “Managing variability and reuse of extra-functional control software in cpps,” in

2021 Design, Automation Test in Europe Conference Exhibition (DATE), 2021, pp. 755–760.
[10] S. Spellini, S. Gaiardelli, M. Lora, and F. Fummi, “Enabling component reuse in model-based system engineering of cyber-physical production systems,”

in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2021, pp. 1–8.
[11] “Automation engineering of modular systems in the process industry - general concept and interfaces,” VDI/VDE/NAMUR 2658 Blatt 1, 2022.
[12] L. Sonnleithner, B. Wiesmayr, V. Ashiwal, and A. Zoitl, “Iec 61499 distributed design patterns,” in 2021 26th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), 2021, pp. 1–8.
[13] B. Vogel-Heuser, E. Trunzer, D. Hujo, and M. Sollfrank, “(Re)deployment of Smart Algorithms in Cyber-Physical Production Systems Using

DSL4hDNCS,” Proceedings of the IEEE, vol. PP, pp. 1–14, 01 2021.
[14] S. Cavalieri and M. G. Salafia, “Asset Administration Shell for PLC Representation Based on IEC 61131–3,” IEEE Access, vol. 8, pp. 142 606–142 621,

2020.
[15] F. Pethig, O. Niggemann, and A. Walter, “Towards Industrie 4.0 compliant configuration of condition monitoring services,” in 2017 ieee 15th international

conference on industrial informatics (indin). IEEE, 2017, pp. 271–276.
[16] M. Wenger, A. Zoitl, and T. Müller, “Connecting PLCs With Their Asset Administration Shell For Automatic Device Configuration,” in 2018 IEEE

16th International Conference on Industrial Informatics (INDIN), 2018, pp. 74–79.
[17] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, “Modeling languages in Industry 4.0: an extended systematic mapping study,” Software and

Systems Modeling, vol. 19, no. 1, pp. 67–94, 2020.
[18] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I. Luković, “Multi-level production process modeling language,” Journal of Computer

Languages, vol. 66, p. 101053, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590118421000320
[19] “Examples of the asset administration shell for industrie 4.0 components – basic part - continuing development of the reference model for industrie 4.0

components,” ZVEI, 2017.
[20] B. S. Institution, The C Standard: Incorporating Technical Corrigendum 1. Wiley, 2003.
[21] J. Knoop, Optimal Interprocedural Program Optimization: A New Framework and Its Application, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2003.
[22] R. Harper, Practical Foundations for Programming Languages. Cambridge University Press, 2016.
[23] M. Goodrich, R. Tamassia, and M. Goldwasser, Data Structures and Algorithms in Java. Wiley, 2014.
[24] L. Bettini, Implementing domain-specific languages with Xtext and Xtend. Packt Publishing Ltd, 2016.

